Mathjax test

Published on  & Last updated on 29 Oct 2019 by Thiviyan Thanapalasingam

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis ‘aute irure dolor in reprehenderit in voluptate’ velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, ‘sunt in culpa qui officia deserunt mollit anim id est laborum’.

Here are some equations:

$x+y=z$

\begin{align} \sqrt{37} & = \sqrt{\frac{73^2-1}{12^2}}
& = \sqrt{\frac{73^2}{12^2}\cdot\frac{73^2-1}{73^2}} \ & = \sqrt{\frac{73^2}{12^2}}\sqrt{\frac{73^2-1}{73^2}}
& = \frac{73}{12}\sqrt{1 - \frac{1}{73^2}} \ & \approx \frac{73}{12}\left(1 - \frac{1}{2\cdot73^2}\right) \end{align}

\begin{align} \sum_{i=0}^n i^2 = \frac{(n^2+n)(2n+1)}{6} \end{align}

\begin{align} \sum_{i=0}^n i^2 = \frac{(n^2+n)(2n+1)}{6} \end{align}

\begin{align} \Biggl(\biggl(\Bigl(\bigl((x)\bigr)\Bigr)\biggr)\Biggr) \end{align}


Cite as:
@article{thanapalasingam2019M,
  title   = "Mathjax test",
  author  = "Thanapalasingam, Thiviyan",
  journal = "thiviyansingam.com/blog",
  year    = "2019",
  url     = "https://thiviyansingam.com/blog/blog/mathjax-test/"
}